GETTING STARTED With EASYCIV[®]

Structural Analysis Of Three-Dimensional Structures

Calgary, AB, Canada https://www.easyciv.com

Jan 2022

Table Of Contents

VERVIEW	3
Toolbar	4
Viewport Controls	5
Seletion palette	6
Copy / Move	7
Small Keyboard	
Display Palette	7
Model Phases	8
FRAME SAMPLE	9
ESULTS VERIFICATION	6
SHELL SAMPLE	C

OVERVIEW

Figure 1 shows the main window for the graphical user interface in a mobile phone. You can also operate EASYCIV on a desktop or tablet. Let's take a moment to explain what you have in front of you.

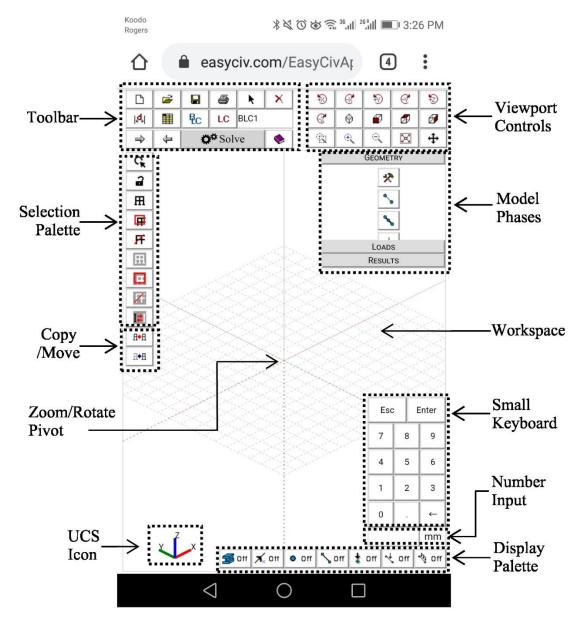


Figure 1 The Graphical User Interface Main Window

Toolbar

The EASYCIV Toolbar is the upper left group of buttons. These buttons perform general actions such as opening and closing files, changing design parameters, printing, and solving the model.

Also, point select *▶*, delete *×* and measure *|*⁴ are presented here as their widely used. Please also open the help *▶* button to check the keyboard shortcut to greatly accelerate your work when having access to the keyboard.

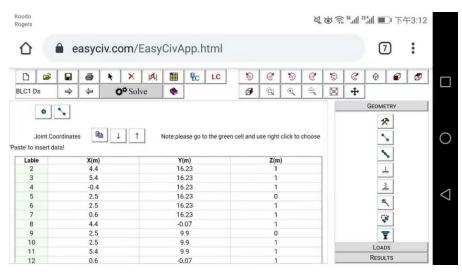


Figure 2 Point Data Sheet

Koodo Rogers													N	<u>نې</u>	³⁶ .11 ²		口下	午3:12	
	-	ea	asyc	iv.co	om/l	Easy	CivA	pp.h	ntml							C	7	:	
D	2		8	k	×	I'q'I		₽ ₽ C	LC	۲	8	1	đ	1	C	•			Ē
BLC1 De	s	⇒	4	<	Sol	ve	۲	1		1	(R)	€.	Q	×	+	1			1
	0 3	1						4								GEOM	ETRY		
				1												_	*		
ita!	/lembers]	Note:pl			reen cell	and use rig			'Paste'	o insert			•	`		(
ta! Lable	/lembers	I Join]	Note:pl	J	Joint	reen cell	and use rig	Sec	tion	'Paste' '	o insert				~		(
ta! Lable 4	/lembers	I Join 64	t]	Note:pl	J	Joint 32	reen cell		Sec DL89x	tion 89x9.5		o insert				`		(
ta! Lable	/lembers	I Join	t]	Note:pl	J	Joint 32 8	reen cell		Sec	tion 89x9.5 6x13LL	v	o insert			•	>		(
ta! 4 5	/lembers	I Join 64 P10	t]	Note:pl	J	Joint 32	reen cell		Sec DL89x DL102x7	tion 89x9.5 6x13LL 6x13LL	v	o insert			•	>		(
ta! 4 5 6	/lembers	I Join 64 P10 P9	t]	Note:pl	J	Joint 32 8 12	reen cell		Sec DL89x DL102x7 DL102x7	tion 89x9.5 6x13LL 6x13LL	v v v	io insert						(
ta! 4 5 6 9	/lembers	I Join 64 P10 P9 20	t]	Note:pl	J	Joint 32 8 12 87	reen cell		Sec DL89x DL102x7 DL102x7 DL89x64	tion 89x9.5 6x13LL 6x13LL 4x9.5LL 4x9.5LL	v v v v	insert						(
ta! 4 5 6 9 10	N embers	I Join 64 P10 P9 20 23	t]	Note:pl	J	Joint 32 8 12 87 89	reen cell		Sec DL89x DL102x7 DL102x7 DL89x64 DL89x64	tion 89x9.5 6x13LL 6x13LL 1x9.5LL 1x9.5LL 6x13LL	v v v v v	insert						(
ta! 4 5 6 9 10 11	/embers	I Join 64 P10 P9 20 23 5	t]	Note:pl	L I	Joint 32 8 12 87 89 1326	reen cell		Sec DL89x DL102x7 DL102x7 DL89x64 DL89x64 DL89x64 DL102x7	tion 89x9.5 6x13LL 6x13LL 1x9.5LL 1x9.5LL 6x13LL 6x13LL	V V V V V V	insert			• • • • • •			(
ta! 4 5 6 9 10 11 12	N embers	I Join 64 P10 P9 20 23 5 P2	t]	Note:pl	U 1 1 1	Joint 32 8 12 87 89 1326 2	reen cell		Sec DL89x DL102x7 DL102x7 DL89x64 DL89x64 DL89x64 DL102x7 DL102x7	tion 89x9.5 6x13LL 6x13LL 1x9.5LL 1x9.5LL 6x13LL 6x13LL 6x13LL		o insert			• • • • • •			(
tal Lable 4 5 6 9 10 11 12 13	N embers	I Join 64 P10 P9 20 23 5 P2 9	t]	Note:pl	U 1 1 1	Joint 32 8 12 87 89 1326 2 1320	reen cell		Sec DL89x DL102x7 DL102x7 DL89x64 DL89x64 DL102x7 DL102x7 DL102x7	tion 89x9.5 6x13LL 6x13LL 1x9.5LL 1x9.5LL 6x13LL 6x13LL 6x13LL 6x13LL	V V V V V V V V V	o insert			• • • • • •			(

Figure 3 Member Data Sheet

In model \blacksquare , from • and \checkmark you can switch from Point and Member Data Sheet. It is recommended that copy the data and paste to text editor or Excel and do the Editorial work in model \blacksquare , Basic Load Case and Load Combination \sqsubseteq Sheet. Please make sure they are the same format when paste back. When copy some members from other program, it will be necessary to click clean up button , to make sure the local axis direction and the members are divided properly.

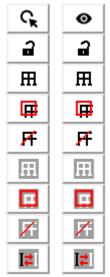

D 🖻		▶ × I	A 🔳	P _C L	C BLC1 Ds		1		9		1	Ø	0	Ø	Ø	Ø	- 8
⇒	Ö [#] Solv	e 🔶					€	<u> </u>	3	+							
Basic	Load Cases	-	٠	Noterple	ase go to the gr	reen cell an	d use rich	t click to	hone	a 'Pacte	e' to ince	ort datal			GEOI	METRY	
							u use rigi			0 1 0 00						*	
No	Descri	ption 0	Gravity	Joi	int	Point		UDL			Area	3					
BLC1	Ds		1			-										~	
BLC2	Do					11		7							- Ē	٩.	
BLC3	L						-									~	
BLC4	Tf					_		2									
BLC5	S							5									
BLC6	Wx			5	5	4 6		34								, m	
BLC7	Wy					3		32							-		
BLC8	Та															٩	
Point I	Load 🗈			Clio	ck To	Sho	SW	Loa	d	D	eta	ail				*	
		Distacne(0~1)	X/kN)													T	
Point I No 1	Load Element No M25	Distacne(0~1) 0.55	X(kN) 0		(N) Z(Sh ((KN) 0067	DW Mx(kNm 0				Mz(ail ^{kNm)}				Ŧ	
No	Element No			Y(k	(N) Z((kN)	Mx(kNm		/y(kN		Mz(kNm)	-			S∛ ₹	
No 1	Element No M25	0.55	0	Y(k 0	(N) Z() -0.0) -0.1	(kN) 0067	Mx(kNm 0		Ay(kN O		Mz(kNm) O	-			Ŧ	
No 1 2 3 4	Element No M25 M46 M67 M72	0.55 0.6143 0.6143 0.55	0 0 0 0 0 0	Y(k 0 0 0 0	xN) Z(0 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1	(kN) 0067 .013 .013 .004	Mx(kNm 0 0 0		Ay(k) 0 0 0 0		Mz(kNm) 0 0 0 0				Ŧ	
No 1 2 3 4 5	Element No M25 M46 M67 M72 M46	0.55 0.6143 0.6143 0.55 0.75	0 0 0 0 0	Y(k 0 0 0 0 0 0	xn) Z(1) 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1	(kN) 0067 013 013 004 009	Mx(kNm 0 0 0 0 0		Ay(k) 0 0 0 0 0		Mz(kNm) 0 0 0 0 0				Ŧ	
No 1 2 3 4 5 6	Element No M25 M46 M67 M72 M46 M67	0.55 0.6143 0.6143 0.55 0.75 0.75	0 0 0 0 0	Y(k 0 0 0 0 0 0 0 0 0	x(N) Z(1) 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1	(kN) 0067 013 013 004 009 009	Mx(kNm 0 0 0 0 0 0		Ay(kh 0 0 0 0 0 0		Mz(kNm) 0 0 0 0 0 0 0				Ŧ	
No 1 2 3 4 5 6 7	Element No M25 M46 M67 M72 M46 M67 M46 M67 M46	0.55 0.6143 0.6143 0.55 0.75 0.75 0.75 0.55	0 0 0 0 0 0 0	Y(k 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C(N) Z(I) 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1	kN) 0067 013 003 004 009 009 009	Mx(kNm 0 0 0 0 0 0 0 0 0		Ay(k) 0 0 0 0 0 0 0		Mz(kNm) 0 0 0 0 0 0 0 0 0				Ŧ	
No 1 2 3 4 5 6 7 8	Element No M25 M46 M67 M72 M46 M67 M46 M67 M46 M67	0.55 0.6143 0.6143 0.55 0.75 0.75 0.75 0.55 0.55	0 0 0 0 0 0 0 0	Y(k 0 0 0 0 0 0 0 0 0 0 0 0 0	x(N) Z(() 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1	kN) 0067 013 004 009 009 0006 0006	Mx(kNm 0 0 0 0 0 0 0 0 0 0		Ay(k) 0 0 0 0 0 0 0 0		Mz(kNm) 0 0 0 0 0 0 0 0 0 0				Ŧ	
No 1 2 3 4 5 6 7 8 9	Element No M25 M46 M67 M72 M46 M67 M46 M67 M46 M67 M73	0.55 0.6143 0.6143 0.55 0.75 0.75 0.55 0.55 0.55	0 0 0 0 0 0 0 0 0 0 0 0	Y(k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XN) Z(0 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.1	kN) 0067 013 013 004 009 009 0006 0006 0006	Mx(kNm 0 0 0 0 0 0 0 0 0 0 0 0 0		Ay(k) 0 0 0 0 0 0 0 0 0		Mz(kNm) 0 0 0 0 0 0 0 0 0 0 0				Ŧ	
No 1 2 3 4 5 6 7 8	Element No M25 M46 M67 M72 M46 M67 M46 M67 M46 M67	0.55 0.6143 0.6143 0.55 0.75 0.75 0.75 0.55 0.55	0 0 0 0 0 0 0 0	Y(k 0 0 0 0 0 0 0 0 0 0 0 0 0	XN) Z(() 0 -0.0 0 -0.1 0 -0.1 0 -0.1 0 -0.1 0 -0.0 0 -0.0 0 -0.0 0 -0.0 0 -0.0 0 -0.0 0 -0.0 0 -0.0	kN) 0067 013 004 009 009 0006 0006	Mx(kNm 0 0 0 0 0 0 0 0 0 0		Ay(k) 0 0 0 0 0 0 0 0		Mz(kNm) 0 0 0 0 0 0 0 0 0 0				Ŧ	

Figure 4 Basic Load Case Sheet

Viewport Controls

When you are working in a graphic model, view the buttons above provide tools, such as rotate and zoom, to assist you with that view.

Seletion palette

Note: The Select To Operate \Im and Select To Show O buttom is controlling the behavior of lower buttons.

Figure 5 Selectiion Palett

Beside point select solution on Toolbars, you may use these powerful tools to help you quickly achieve the selection that you want. They are located on the vertical Selection Palette on the left side of the screen.

The Box Select \square and Box Unselect \square tools work as you might expect; you use them to draw a box around the part of the model you wish to select or unselect. Only items that are entirely in the box will be affected.

To use these, first click the button then move the mouse to the model view. Click and hold the mouse button to establish an anchor point for the box; then move the mouse such that the box encloses that part of the model to be selected or unselected. Then release the mouse to perform the select or unselect operation.

The box cursor remains, and you may draw as many boxes as you need until you are finished.

When on **touch screen**, you might touch the screen and move along the screen to draw a red box in the same way.

With the Line Select F and Line Unselect it tools you simply draw a line through all the items that you want to select or unselect. Just click and hold the mouse at the start of the line and then draw the line until you release the mouse button.

The Invert Selected option **I** is used to invert the selected state of the model. All selected items are made unselected, and all unselected items are made selected.

The Unlock $\widehat{\bullet}$ button, when pressed it will become Lock $\widehat{\bullet}$ condition, under select to operate $\widehat{\bullet}$ condition, causes all currently unselected items to stay unselected, no matter what other selection buttons are pressed, until this button is pressed again. When under select to show $\widehat{\bullet}$ condition, Lock/Unlock condition will control the unselected member to show as dashed line or disappear completely.

Copy / Move

EASYCIV allows you to copy/move selected portions of the model along a single direction. After selected proper portion of the model and click the copy $\mathbb{H}^{+}\mathbb{H}$ / move $\mathbb{H}^{+}\mathbb{H}$ button (Note that the copy button has a red arrow). Just click to choose a start point and input a number for the distance. Then move the mouse around to the desired direction (Color line connecting between start point and mouse tip shown accordingly). Finally, you can apply the copy/move by hitting an enter key.

Small Keyboard

Small keyboard is designed for mobile or tablet with no keyboard attached with the same function of a physical keyboard.

Display Palette

Figure 6 Display Palette

There are a series of toggle buttons located on the lower button corner of the screen. From left to right, they are the toggle for 3D member show, local axis, point label, member label/member size, node load, point load and line load.

Model Phases

Model phases consists of three major stages of the design, GEOMETRY, LOADS AND RESULTS. Many important buttons and inputs are included inside, and we will get familiar with them through a quick sample below.

Note: EasyCiv is to assist you with your analysis and simulation and is not a substitute for your professional judgment or your own independent analysis, simulation or other activities, including those with respect to product stress, safety and utility.

A FRAME SAMPLE

So, we have started EASYCIV and are ready to define our model. We should note here that your picture might not look like the screen in Figure 1. Your mobile, desktop or tablet screen resolution and font sizes can change the appearance of the menu and toolbars. This is simply cosmetic and should not affect your ability to go through this sample.

A plane frame calculation sample, Figure 6 and Figure 7, from the book: STRUCTURAL ANALYSIS--A UNIFIED CLASSICAL AND MATRIX APPROACH, Seventh Edition-Taylor and Francis (2017) by Ghali, Amin and Neville, Adam, is used here to demonstrate the modeling and sever as a verification example in next chapter.

EXAMPLE 5.3: PLANE FRAME WITH INCLINED MEMBER

Obtain the bending moment diagrams for the plane frame in Figure 5.3a due to the separate effects of: (1) the loads shown; (2) a downward settlement δ_D at support *D*. Consider EI = constant and neglect the change in length of members.

Figure 7 A Plane Frame Example

Case 1 will be considered here. Relevant data are listed as below:

Geometry:

Cross-section: square b = 100mm

Span: I = 1m

Material: E = 200GPa

Loads:

P = 1kN

q = 1kN/m

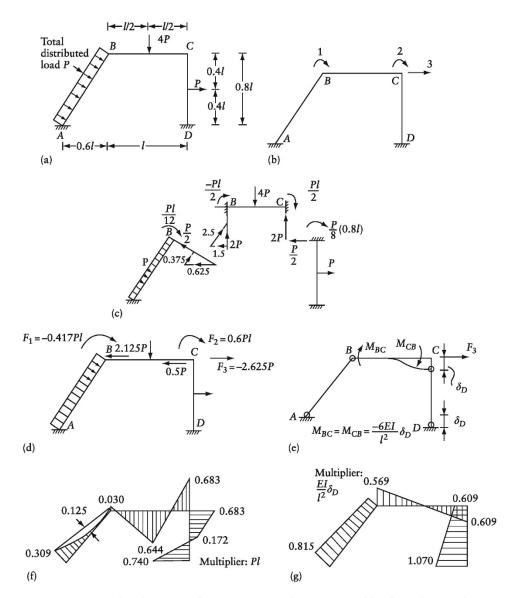


Figure 5.3 Frame analyzed in Example 5.3. (a) Frame dimensions and loading. (b) Coordinate system. (c) Fixed-end forces in case (1). (d) Restraining forces {F} in case (1). (e) Member-end moments with the displacements restrained at the coordinates in case (2). (f) Bending moment diagram in case (1). (g) Bending moment diagram in case (2).

for case (2), the shearing force at end B of member BC will be an upward force equal to $(12EI\delta_D/l^3)$. This force can be substituted by a component equal to $(15EI\delta_D/l^3)$ in AB and a component equal to $(-9EI\delta_D/l^3)$ in direction of coordinate 3. The latter component is equal to F_3 in case (2).

The member-end moments when the displacements at the coordinates are prevented (Figure 5.4a and Figure 5.3e) are

Figure 8 Example from Book

Step 1 Draw Elements

- 1. Click Draw Line 🍗 button.
- 2. Click on any point in workspace.
- 3. Click on solid light blue line above that point make a portion of line turn dark.
- 4. Input 800.
- 5. Click Enter.
- Click Zoom All ^I button, Zoom In ^Q button and Pan [⊕] button to get proper view.
- 7. Click Draw Line 🍗 button.
- 8. Click on top node of previous element.
- 9. Click on solid light red line.
- 10. Input 1000.
- 11. Click Enter.
- 12. Click on dash blue line.
- 13. Input 800.
- 14. Click Enter.
- 15. Click Esc, finish element drawing.

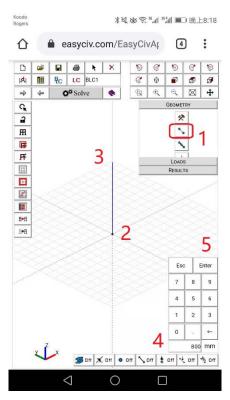


Figure 9

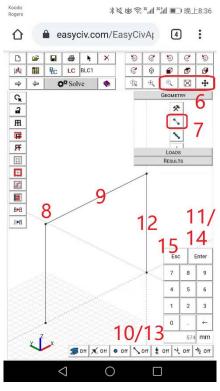


Figure 10

Step 2 Modify Element

- 1. Click Box Select 🛱;
- Slice to create a box to select lower left corner point.
- 3. Click any point to start.
- 4. Slice to show a direction line.
- 5. Input 600.
- 6. Click Enter.
- 7. Click Box Select 🐺;
- 8. Slice to create boxes to select two bottom points.
- 9. Click Support ^J button to expand the panel.
- 10. Click Apply \checkmark button to assign support.
- 11. Click Esc, finish this step.

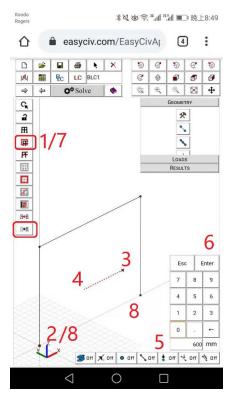


Figure 11

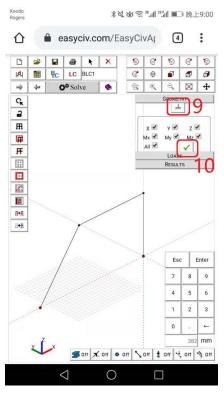


Figure 12

Step 3 Define and Apply Cross Section

- 1. Click Cross Section \mathbf{I} button to expand panel.
- 2. Click Self-Define 🕿 button to load dialog box.
- 3. Click Rectangle section.
- 4. Input sizes.
- 5. Click Apply \checkmark button.
- 6. Click Close X button to close dialog.
- 7. Select User-define and corresponding cross section.
- 8. Click Select All **H** button.
- 9. Click Apply \checkmark button.
- 10. Click Esc, finish this step.
- 11. Click Toggle 3D ^{Son} button to check.
- 12. Click Toggle 3D ^{III} button again back to line show.

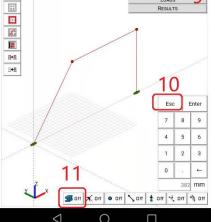


Figure 14

Step 4 Apply Loads

- 1. Click Load on Model Phase to show load panel.
- 2. Click Point Load * button to expand panel.
- 3. Select force direction, magnitude, and location; (note: click on "%", toggle between mm and %, calculate from start node)
- 4. Click Line Select Ff button.
- 5. Slice the screen to line select top beam.
- 6. Click Apply \checkmark button.
- 7. Click Esc, finish this force apply.
- 8. Repeat 3 6 to apply another point load.
- 9. Click Line Load $\stackrel{\text{\tiny theta}}{\to}$ button to expand panel.
- 10. Select force direction, magnitude, and location; (note: XYZ means global coordinate and xyz means local coordinate)
- 11.Click Line Select 杼 button.
- 12. Slice the screen to line select top beam.
- 13.Click Apply ✓ button.
- 14. Click Esc, finish force applies.

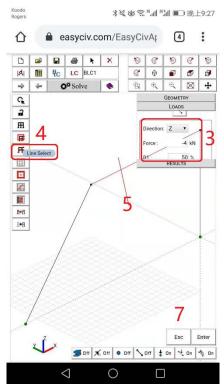


Figure 15

Rogers

米×∞ 念 ™川 ™川 ■ □ 晩 ⊢9:40

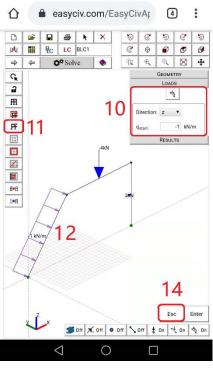


Figure 16

Step 5 Calculate and Results

- 1. Click Solve Solve button.
- 2. Click Esc, clear the screen.
- 3. Click Bending Moment 🗖 button.
- 4. Click Apply \checkmark button.
- 5. Click Front View 💕 button.
- 6. Click Parameter 😤 button.
- 7. Click Toggle Detail/Max button to check the detail bending moment.
- 8. Click Select to Show [•] button.
- 9. Click Line Unselect 🔀 button.
- 10. Slice to unselect top beam to eliminate some

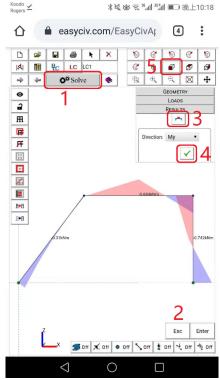


Figure 17

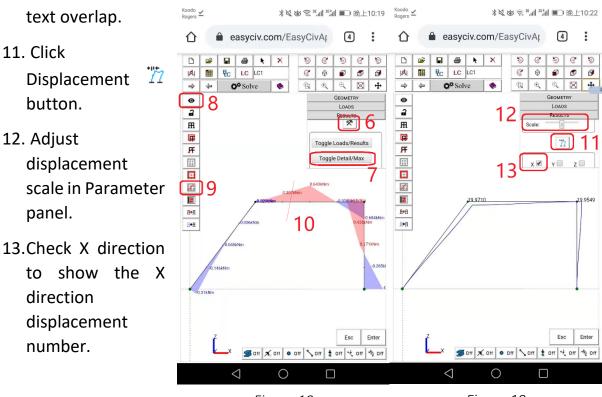


Figure 18

Figure 19

RESULTS VERIFICATION

Theoretical results (STRUCTURAL ANALYSIS--A UNIFIED CLASSICAL AND MATRIX APPROACH, Seventh Edition-Taylor and Francis (2017) by Ghali, Amin and Neville, Adam,) Figure 19 / 20 are compared with the ones obtained from EASYCIV analysis.

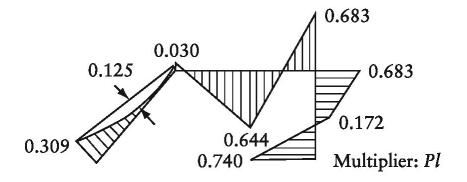


Figure 20 Bending Moment Diagram

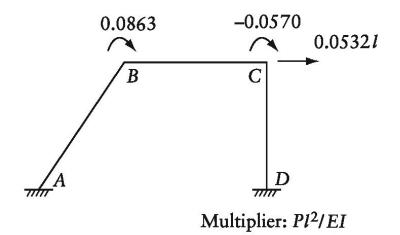
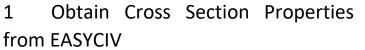



Figure 21 Displacement Diagram

Step 1 Obtain Moments of Inertia

- 1.1 Click Cross Section **I** button to expand panel.
- 1.2 Click used cross section.

1.3 Obtain Moments of Inertia,

I = 1.333e+4mm⁴.

,d,			8	R	×	1	Ø	1	Q	¥+U
		₽ _C	LC	BLC1		C	٢	1	1	6
⇒	4	¢	* Sol	ve		- Eg	æ,	Q		4
0			N	me : A				GEOME	TRY	
2			Sh	ape:2			Use	r-define		•
			d()	oup : mm) : 20			А			•
Ħ				mm):20 nm):				2	1	
₽			w	mm):		2				1
FF	1		R	nin(mm) : nax(mm)		20	A 08			
			BT	:		_		LOAD		
			H, K(, : mm) :		_		RESUL	TS	
			K1	(mm) :						
			K ₁ D _n							
Z			K ₁ D _n Ma	(mm) : _{om} (mm) ass(kg/m mm ²) : 4	n):4 00					
			K ₁ D _n Ma A((mm) : _{om} (mm) ass(kg/m mm ²) : 4 mm ⁴) : 1	n):4 00 .3333e+4	3				
Z				(mm) : om(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ⁻¹) : 1	n):4 00 .3333e+4 1.3333e+3	3				
			K1 Dn Ma A(Sy Ry	(mm) : _{om} (mm) ass(kg/m mm ²) : 4 mm ⁴) : 1	n):4 00 .3333e+4 1.3333e+3	³ 3				
			K ₁ D _n Ma A(Sy Ry Zy I ₂ ((mm) : orn(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 5 (mm ³) : 1 mm ⁴) : 1	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4					
			K ₁ D _n Mi A(Ly(Sy Ry Zy L _z (S _z	(mm) : orn(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 1 (mm ³) : (mm ³) : 1 (mm ³) : 1	n): 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+4					
			K1 Dn Mi A(V Sy Ry Zy Iz(Sz Rz	(mm) : om(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 7 (mm ³) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 5	n): 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+4					
			K1 Dn Ma A(Sy Ry Zy Zz Rz Zz	(mm) : orn(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 5 (mm ³) : 2 (mm ³) : 5 (mm ³) : 1 (mm ³) : 5 (mm ³) : 1 (mm ³) : 1 (mm ³) : 5 (mm ³) : 1 (mm ³	n): 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+4			Es	c 1	Ente
			K1 Dn Mi A Sy Ry Zy Iz Sz Rz Zz J(t	(mm) : orn(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 2 (mm ⁴) : 2 (mm ⁶) : 2 (mm ⁶) : 2	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4					1
			K1 Dn A Syr Z Z Z Z Z Z Z V	(mm) : orn(mm) ass(kg/m mm ²) : 4 mm ⁴) : 1 (mm ³) : 7 (mm ³) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 2 (mm ⁴) : 2 (mm ⁴) : 2 (mm ²) : 2 (mm ²) : 2	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4			Es. 7	c 1 8	Ente
				(mm) : om(mm) ass(kg/m mm ⁴) : 1 (mm ⁴) : 1 (mm ⁴) : 1 (mm ³) : 2 (mm ⁴) : 2 ,(mm ⁶) : 2	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4			7	8	9
				(mm) : om(mm) ass(kg/m mm ⁴) : 1 (mm ⁴) : 1 (mm ⁴) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 1 (mm ³) : 2 (mm ³) : 2 (mm ⁴	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4					1
			K1 DnMa A SyRy Zy(z SZ Zz(t S S V S S C V S S C S S	(mm): om(mm) ass(kg/m mm ²): 4 mm ⁴): 1 (mm ³): 7 (mm): 5 (mm ³): 1 (mm ³): 1 (mm ³): 2 (mm ³): 2 (mm ⁴): 2 (mm ²): 2 (mm ²): 3 (mm ²): 2 (mm ³): 7 (mm ³): 7	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4			7	8	9
				(mm): om(mm) ass(kg/m mm ²): 4 mm ⁴): 1 (mm ³): 7 (mm): 5 (mm ³): 1 (mm ³): 1 (mm ³): 2 (mm ³): 2 (mm ⁴): 2 (mm ²): 2 (mm ²): 3 (mm ²): 2 (mm ³): 7 (mm ³): 7	n) : 4 00 .3333e+4 1.3333e+3 .77 .3333e+4 1.3333e+3 .77 .6667e+4			7	8	e
			K1 D _m Ma A(c Syy Sy Zy Iz Zz Zy J(c Sz Zz Zy J(c W R SZ Sz Sz Zz D C W	(mm): om(mm) ass(kg/m mm ²): 1 (mm ³): 2 (mm ⁴): 2 (mm ⁴): 2 (mm ⁴): 2 (mm ³): 2 (mm ³): 2 (mm ³): 2 (mm ³): 3 (mm ³	1) : 4 00 .3333e+4 .3333e+4 .3333e+4 1.3333e+4 1.3333e+3 .77 .6667e+4			7	8	e

Figure 22

Step 2 Obtain Young's Modulus

- 2.1 Click Material **T** button to expand panel.
- 2.2 Obtain Young's Modulus,
- E = 200GPa

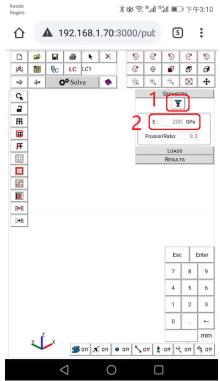


Figure 23

2 Diagrams from EASYCIV

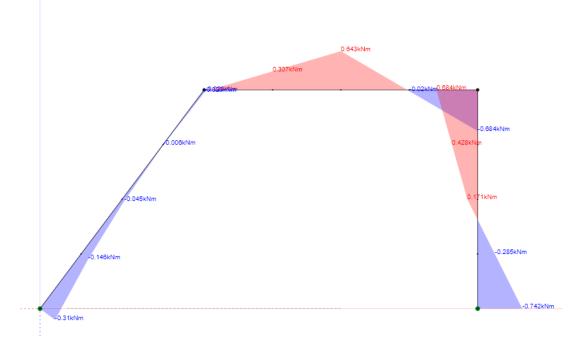


Figure 24



Figure 25

3 Results Comparison

Maximum values of displacements and bending moments at different positions obtained from EASYCIV analysis are presented in Table 1 and Table 2, respectively and compared with those obtained from theoretical results.

	oomp			or benaning			/
	MA	M_{MidAB}	M_{B}	M_{MidBC}	Mc	M_{MidCD}	M_{D}
Theory	0.309	0.045	0.030	0.644	0.683	0.172	0.740
EASYCIV	0.310	0.045	0.029	0.643	0.684	0.171	0.742
Difference	0.32%	0.22%	0.68%	0.16%	0.15%	0.35%	0.27%

Table 1 Comparison of Results for Bending Moments (kN·m)

 Table 2 Comparison of Results for Displacement (mm or rad)

	MB	Mc	X _B	Xc
Theory	0.0324	0.0214	19.9500	19.9500
EASYCIV	0.0324	0.0214	19.9710	19.9549
Difference	0.12%	0.12%	0.11%	0.02%

a) Conclusion

The result comparison reflects acceptable agreement between EASYCIV software and theoretical results. In theoretical method, the assumption of neglecting the change in length of members might be the reason of the difference.

A SHELL SAMPLE

Rectangular element with corner nodes (24 degrees of freedom) and thin (Kirchhoff) plates are considered in EasyCiv currently. In EasyCiv, 5 buttons are designed for finite element modeling specifically. Shell button, \cong , is for creating shell element and modifying shell thickness and material. Combining with the display toggle button, \boxtimes on , you can switch showing the thickness and material in model. Mesh button, \boxplus , is for meshing selecting shell element while Mesh- select button, \textcircled , is for turning frame element into shell element. Stress button, is for showing the Von Mises stress in model.

Shell finite element analysis in EasyCiv is an excellent tool for looking into the detail of the distribution of stress over the element to avoid overstress locally.

Below is a very simple sample to demonstrate how to build and analyze the shell model in EasyCiv.

Step 1 Create the First Element

- 1. Click Draw Line 🍗 button.
- 2. Click on any point in workspace.
- 3. Click on solid red line beside that point make a portion of line turn dark.
- 4. Input 1000.
- 5. Click Enter.
- 6. Click Esc, finish element drawing.
- 7. Click Select-all **H** button.
- 8. Click Cross Section 🎞 Button.
- 9. Select W-shapes and W200X36 from drop down list.
- 10. Click Apply ✓ button.
- 11.Click Element Toggle Shon button to check if member size is right.

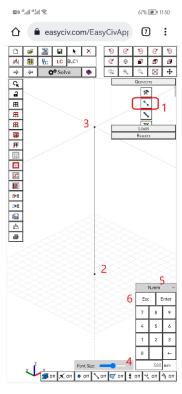


Figure 26

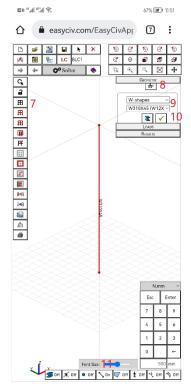


Figure 27

Step 2 Mesh the First Element

- 1. Click Mesh- select \mathcal{D} button.
- 2. Click Select-all **H** button.
- 3. Click Mesh^{\blacksquare} button.
- 4. Input 4/4 and click Apply \checkmark button.
- 5. Click Esc, finish element drawing.
- 7. Click Select to Show [•] button.
- 8. Click Box Select 🛱.
- Slice to create boxes to select web at center elevation. Click Lock a button to hide unselect.
- 10. Click ISO View [℗] button. Click Select toggle ^Ω button to switch back to select mode.

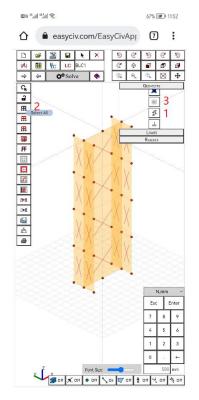
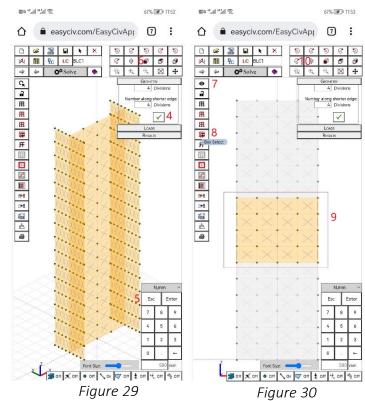



Figure 28

Step 3 Create the Second Element

- 1. Click Draw Line 🍗 button.
- 2. Click on an existing point.
- 3. Click on dash green line beside that point make a portion of line turn dark.
- 4. Input 800.
- 5. Click Enter.
- 6. Click Esc, finish element drawing.
- Click Select button to select second element.
- 8. Click Cross Section 🐺 Button.
- 9. Select W-shapes and W200X36 from drop down list.
- 10. Click Apply ✓ button.
- 11.Click Element Toggle $^{\on}$ button to check if member size is right.

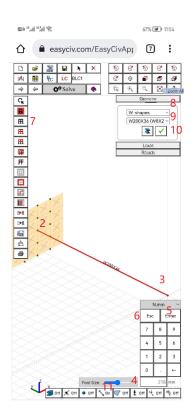
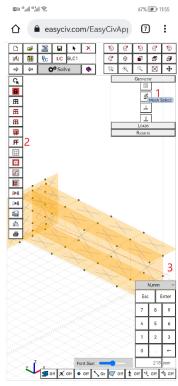
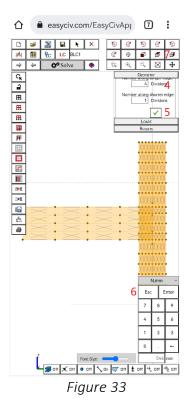
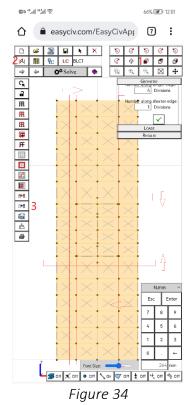
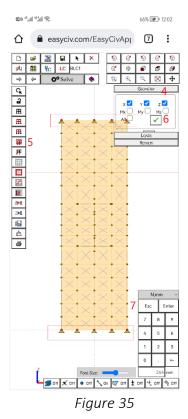


Figure 31

Step 4 Mesh the Second Element

- 1. Click Mesh- select \mathcal{D} button.
- 2. Click Line-select ₱ button.
- 3. Draw a line to select web elements.
- 4. Click Mesh^{\blacksquare} button.
- 5. Input 4/1 and click Apply ✓ button.
- 6. Click Esc, finish element meshing.

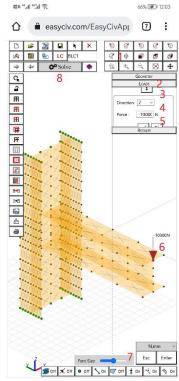
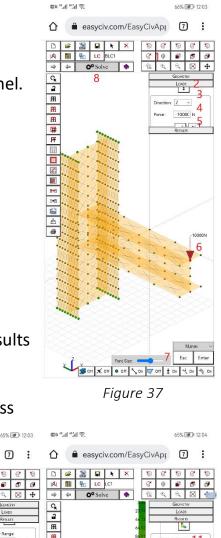

Figure 32

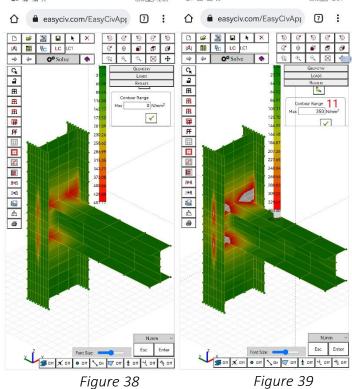
Step 5 Fine Tune the Model and Add Supports

- 1. Click Front View 💞 button.
- 2. Click Measure ^[4] button to get the gap between the nearby nodes from the conjunction of the two members.
- 3. Click Move to make sure two members share the nodes.
- 4. Click Support June button to expand the panel.
- 5. Click Box Select 🛱 select two end nodes.
- 6. Click Apply \checkmark button to assign support.
- 7. Click Esc, finish this step.

Step 6 Apply Load and Analyze

- 1. Click ISO View $^{\textcircled{0}}$ button.
- 2. Click Load on Model Phase to show load panel.
- 3. Click Node Load [‡] button to expand panel.
- 4. Select force direction Y, 1 kN.
- 5. Click Apply \checkmark button.
- 6. Select center point at top flange.
- 7. Click Esc, finish this force apply.
- 8. Click Solve Solve button.


Figure 36

Step 7 Apply Load and Analyze

- 1. Click ISO View $^{\textcircled{0}}$ button.
- 2. Click Load on Model Phase to show load panel.
- 3. Click Node Load 🕏 button to expand panel.
- 4. Select force direction Y, 10 kN.
- 5. Click Apply \checkmark button.
- 6. Select center point at top flange.
- 7. Click Esc, finish this force apply.
- 8. Click Solve Solve button.
- 9. Click Results on Model Phase to show results panel.
- 10. Click Stress button to show the stress contour.
- 11. Input material yielding strength to show yielding zone.

Note: the stress contour shows the maximum elastic stress exceed limit, so stiffeners are considered.

Step 8 Add Stiffeners and Re-analyze

- 1. Show the joint only and click Shell ^X button to pick 4 points to create a single shell.
- Select the shell, then click Mesh^Ⅲ button, Input 4/1 and click Apply ✓ button.
- 3. Measure the distance between two flanges, show stiffener only and copy.

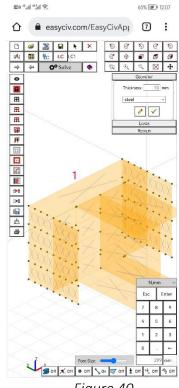
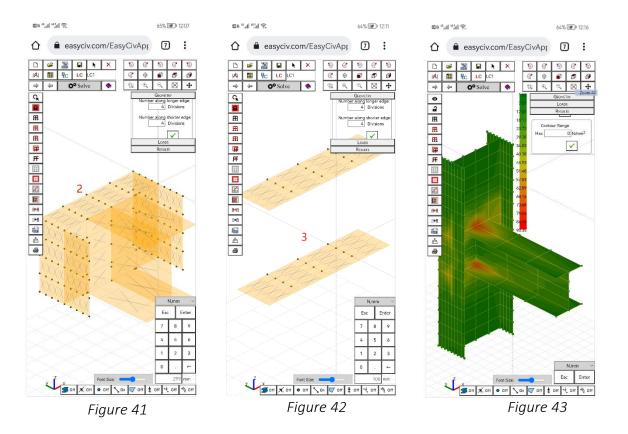



Figure 40

